Navigating the Challenges of Physical Verification in 3DICs: From 2D to 3D

Qi Wang, Mohannad Alshawi, Jeanne Trinko-Mechler, Abhijat Goyal, Mike Kim

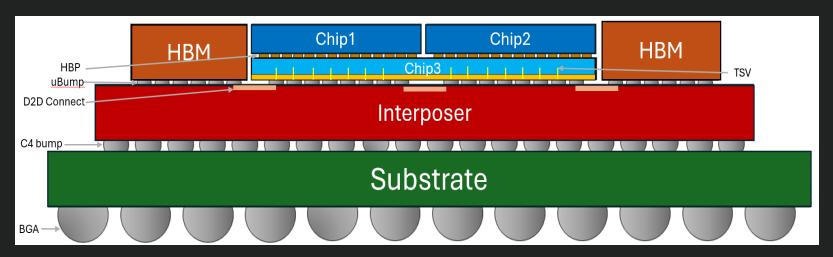
Marvell Semiconductor Inc.

10/01/2025

Agenda

- Introduction to 3DIC Physical Verification
- Challenges in 3DIC Physical Verification
- Unified 3DIC Physical Verification Flow
- Case Insights and Pilot Implementation
- Conclusion

Introduction to 3DIC Physical Verification


What is 3DIC

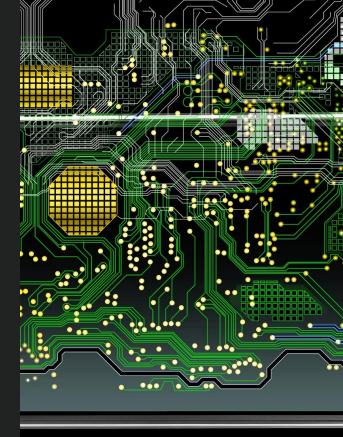
3DIC: Three-Dimensional Integrated

Key Components: SoC Chips, High Bandwidth Memory (HBM), Through-Silicon Vias (TSV), advance packaging

Key Benefits: Increased performance, improved power efficiency, heterogeneous integration, enhanced bandwidth

Applications: High-performance and compact designs

Challenges in 3DIC Physical Verification


Why 2D Signoff Fails in 3DICs

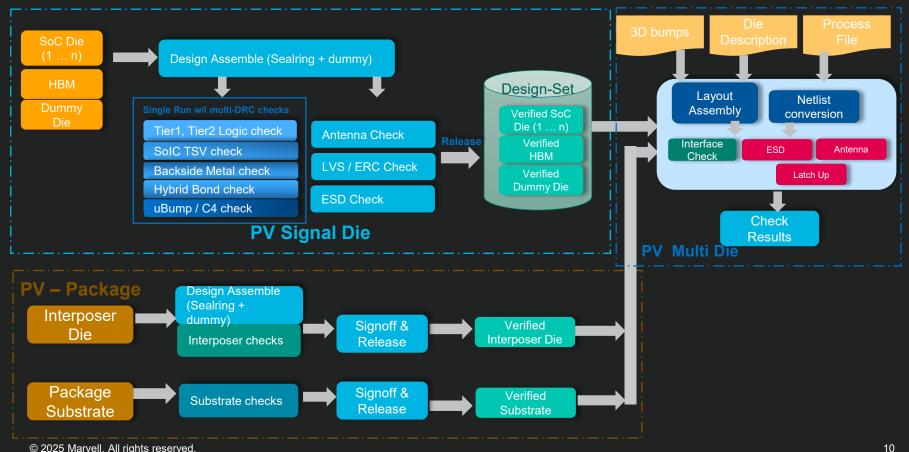
Limitations of 2D Physical Verification

Complex Vertical Interactions

Undetected Failures in 3D Stacks

Need for New PV Methodologies

Why 2D PV Breaks in 3D


CHALLENGE	DESCRIPTION
Heterogeneous Die Stacking	Different process nodes and foundries rule compliance
TSV and Micro-Bump Connectivity	Cross-die alignment and electrical consistency checks
Antenna Effect Analysis	New conductive elements, complex electrical paths
Seal Ring Insertion	Post-assembly insertion affects dummy pad visibility
Die Alignment Checks © 2025 Marvell. All rights reserved.	Ensures hybrid bond pads are correctly aligned

Build Unique and Unified Flow

Multi-Die Verification	Integrate multi-level checks DRC, LVS, antenna, and ESD checks.
Vendor-Neutral Verification	Ensure compatibility across different platforms and technologies
Automated Verification	Streamline verification and reduce manual errors.
Early Issue Detection	Reduce late-stage failures and improve reliability

Unified 3DIC Physical Verification Flow

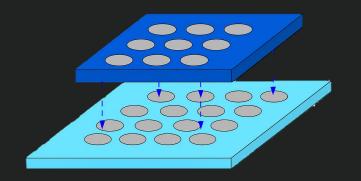
Unified Physical Verification Flow

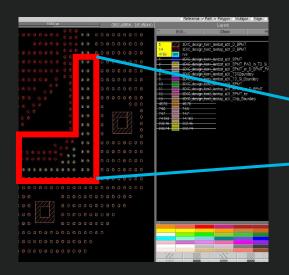
Seal Ring and Dummy Pad Strategy

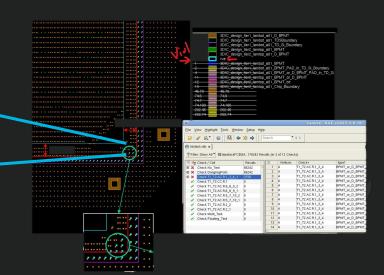
Seal Ring Importance

Provide the crucial mechanical protection and environmental isolation.

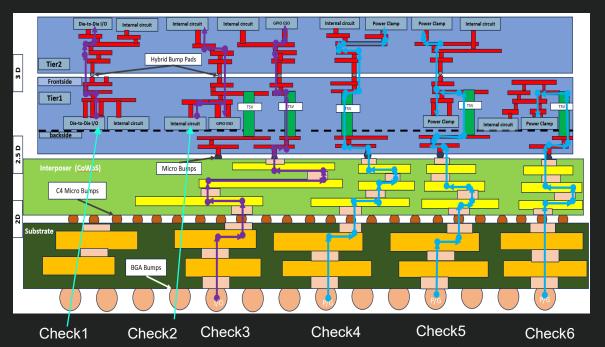
Dummy Pad Challenges

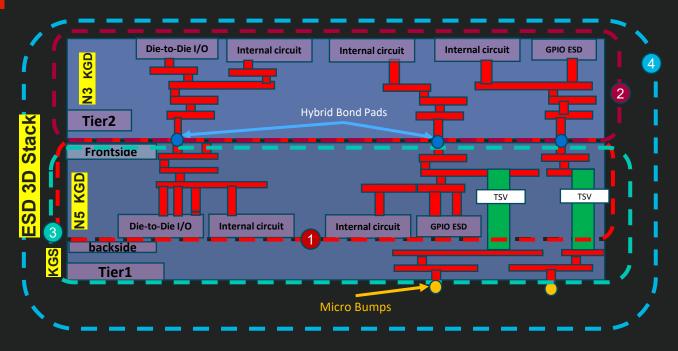

Complicate post-assembly assignment due to invisibility in P&R.


Automated Dummy Pad Generation


Auto-generate DRC-compliant dummy HBPs, enable early interface alignment checks.

3D Connectivity flow


- Validate bump alignment between stacked dies
- Ensure TDS boundary layer alignment
- Verify bump connectivity and perform LVS


Electrical 3D ESD Verification

Overall Goal : Check all the possible ESD Paths from the substrate to all the ESD Cells inside dies

- Check1: Connectivity from on hybrid bond to its facing counterparts
- Check2: Micro-bump die-to-die signal pad
- Check3: IO signal bump to GPIO ESD
- Check4: Power / Ground bump to Tier2 power clamp cells
- **Check5**: Power / Ground bump to both Tier1 and Tier2 power clamps
- Check6: Power / Ground bump to both Tier1 power clamps

ESD Challenges

- Tool Performance Challenges
- SolC™ Bottom Die
 Dual-mode Verification
- ESD Check Job Overhead

Die-to-Die I/O: Input/Output interface for high performance, low-power D2D communication

KGD (Known Good Die): Check ESD w/o backside metal

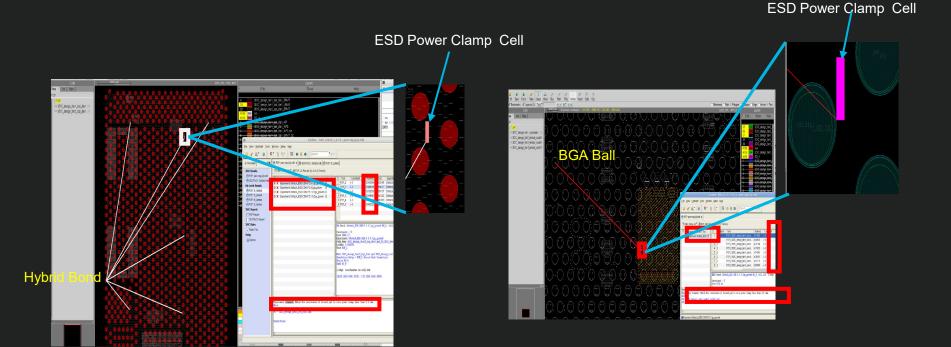
KGS (Known Good Stack): Check full GPIO and ESD clamp w/l backside metal

Generalized Runtime Performance

Full Chip- SOIC Tier1	Runtime (KGD)	Runtime (KGS)	RESOURCES
Topology (TOPO) Check	3 hours	2.9 hours	48 cores
Logic Driven Layout (<i>LDL</i>) Check	2.5 hours	2.5 hours	48 cores
Current Density (CD) Check	6.2 hours	6.2 hours	16 cores
Point to Point (<i>P2P</i>) Check	39 hours	6.5 hours	240 cores

SolC Tier1 Bottom Die: 9 Power Domains

1 Ground


> 24000 D2D Signal nets

> 100 I/O Signal nets

Full Chip- SOIC Tier2	Runtime	RESOURCES
Topology (TOPO) Check	1.5 hours	48 cores
Logic Driven Layout (<i>LDL</i>) Check	1.6 hours	48 cores
Current Density (CD) Check	1.8 hours	48 cores
Point to Point (P2P) Check	41 hours	240 cores

SolC Tier2 Top Die: 9 Power Domains 1 Ground > 24000 D2D Signal nets

3D PERC ESD Result

Results for SolC[™] Standalone

Results for SolC™ + Substrate

Conclusion

- Adopt new PV strategies to manage 3DIC complexity
- Build a unified framework for die, package, and stack verification
- Shift verification left with standards-driven practices
- Align signoff across all integration layers
- Advance modeling for 3D antenna and ESD effects
- Collaborate across design, packaging, and verification teams

3DIC is the future of semiconductor innovation Together, we can make something amazing happen!