
Hardware Trust, Firmware Assurance:
A Rust-based Root-of-Trust for Modern
Secure Systems

Speakers: Xiling Sun, Parvathi Bhogaraju

Oct. 1st , 2025

Motivation
Increasing Firmware Attacks
Firmware is a growing target for sophisticated attackers seeking to
bypass higher-level security controls

Secure-by-Design Principle
Modern platforms require robust security foundations starting from
the hardware Root-of-Trust (RoT)

Role of Hardware Root-of-Trust
Establishes a secure and verifiable foundation for launching upper-
level firmware and software layers

Limitations of Traditional C-based RoT Firmware
Vulnerabilities such as buffer overflows, use-after-free, and
undefined behavior are common in C, especially in privileged code

Modern RoT Firmware with Rust
Utilizing Rust and Tock OS enhances firmware security through
memory safety and microkernel isolation

Design Goals

Memory Safety
Mitigate vulnerabilities using Rust’s ownership model and type system.

Modularity & Isolation
Tock OS microkernel isolates components, reducing fault propagation.

Scalability
Support diverse platforms with reusable, configurable components.

Open Development
Higher security transparency and implementation visibility.

Threat Model
Adversary Capabilities

• Tamper with firmware during manufacturing or
supply chain

• Exploit runtime vulnerabilities to gain privileged
access

• Attempt to bypass secure boot or measurement
mechanisms

• Interfere with cryptographic operations or key
management

• Physical attacks (e.g., side-channel, fault
injection)

Defensive Focus (Firmware)
• Strict memory safety
• Process isolation
• Integrity from boot through attestation

Caliptra Security Subsystem Overview

MCU

RISC-V Core

AHB

Crypto
Subsystem

Adams-
Bridge Peripherals Regs/Fuses

Mailbox

SHA Accel

AES

RSIC-V Core

AXI InterConnect

Fuse
Controller

Life Cycle
Controller

I3C ROM

Rest of SoC

Manufacturer
Control Interface

(MCI)

SoC-IFC

Caliptra Core

Caliptra Security Subsystem

Fig. 1 Simplified Caliptra Security Subsystem Architecture

• Open-source, standardized hardware Root-of-
Trust (RoT) for wide range of System-on-
Chip(SoC) platforms

• Anchors secure boot, attestation,
measurement, and cryptographic firmware
updates and secure I/O

• MCU (Manufacturing Control Unit)
orchestrates platform-level security and
lifecycle management

• Hardware-backed cryptography and
measured boot defend against supply chain
threats and runtime attacks

• Modular design enables interoperability and
scalability across diverse platforms

MCU Design Highlights
Architecture

• Open-source RISC-V
 VeeR EL2 core, SoC-agnostic design
 Modular Tock OS drivers/capsules for hardware abstraction

• Dual-stage firmware stack
 Bare-metal ROM for hardware initialization
 Runtime firmware for RoT services

Secure RTOS Integration - Tock OS
• Rust-based microkernel
• Enforces process isolation and memory safety
• Peripheral drivers as capsules for clean separation and

extensibility
Security Features

• Secure firmware update and attestation
• Hardware-backed cryptographical services
• Anti-rollback protection

Streaming Boot
• Eliminates persistent firmware storage: reducing an attack

interface
• Streams and validates firmware at boot dynamically and

securely

MCU Firmware Stack - Runtime

RoT Application

Platform & SoC Message Interface

API & Services

Image Loading Firmware Update Attestation

Crypto services

Lifecycle
Management

Secure
Debug Unlock

Certificate StoreAnti-rollback

Ownership
Transfer

Protocols & Boot Stack

MCTP

PLDMSPDM Vendor Specfic Streaming Boot

Flash Boot

Async Usermode System Call Interface

Tock Kernel & Drivers

Flash Driver

I3C Driver MCTP Driver Caliptra Mailbox Driver

MCU Mailbox Driver SoC Specific Drivers

MCU ROM

Platform Hardware or Emulator

Fig. 2 MCU Firmware Stack

Protocol Stack & Implementation

Supported Protocols
• SPDM, PLDM, Caliptra vendor-defined messages

Async interface
• Provide async Rust APIs for sending/receiving

messages from userspace.
Memory-safe isolation with Tock Capsules

• MCTP base and control protocol handling.
• Virtualization: Multiple virtual MCTP drivers per

board , each protocol assigned a unique driver
number.

• Mux Layer: Centralizes transmission/reception,
tags messages, manages outstanding requests

• Transport binding: Adds/removes I3C-specific
header/trailer, handles Packet Error Code (PEC). I3C Target Driver

MCTP Transport Binding
(I3C)

MuxMCTPDriver
(Multiplexing Layer)

Virtual
MCTP Driver

Virtual
MCTP Driver

Virtual
MCTP Driver

PLDM
Firmware Update

Vendor-defined
Message

Async Syscall Interface

SPDM

Tock Kernel

Userspace

MCTP

Fig. 3 Protocol Stack

Streaming Boot Flow
Two-stage boot sequence for secure,
scalable firmware delivery.
• Stage 1: Early Firmware Loading via OCP

Recovery Protocol
• Caliptra FMC + RT
• SOC Manifest
• MCU Runtime

Fig. 4 Simplified streaming boot flow –stage 1

Stage 2: Remainder Firmware
Loading via PLDM Firmware
Update Protocol

• Enables modular, component-
based firmware updates and
supports “pull” model for flow
control and error recovery.

• Remainder-firmware is loaded
directly into device RAM, not
persistent storage, enabling
secure, impactless updates and
rapid recovery.

• Device attests to its boot state
via SPDM, ensuring integrity and
compliance.

Fig. 5 Simplified streaming boot flow –stage 2

Trusted I/O for Confidential Workloads

SPDM provides cryptographic attestation to verify device
identity and integrity, forming the root of trust.

IDE_KM secures PCIe data in transit by managing
encryption keys, enabling end-to-end path protection.

TDISP ensures trusted assignment and isolation of device
resources to virtual machines, supporting secure I/O
virtualization.

Together, they enable secure communication, hardware-
enforced isolation, and form the foundation for
confidential computing across diverse platforms.

Evaluation

Fully open-source design enables public auditing and repeatable builds

Adheres to industry standards (OCP, TCG, DMTF, PCI-SIG), ensuring interoperability and easy
validation

Rust-based firmware eliminates common memory safety vulnerabilities found in C-based RoT
firmware .

Modular architecture supports secure boot, attestation, anti-rollback, and lifecycle
management, surpassing legacy RoT flexibility

Integrates post-quantum cryptography, preparing platforms for future threats

Rust Development Experience
Challenges

• Required a fundamental shift in development mindset and
architecture due to Rust’s ownership model and strict type
system.

• Initial learning curve was steep. Explicit lifetimes and borrowing
rules demanded careful resource management.

• Embedded debugging and hardware integration posed new
workflow challenges.

Opportunities & Advantages
• Eliminated entire classes of C bugs (buffer overflows, memory

aliasing, dangling pointers) through strong compile-time checks.
• Rust’s async/concurrency model, combined with Tock OS

microkernel, enabled safe, isolated, event-driven firmware tasks.
• Possible to achieve near C-level performance, optimization

required for dynamic dispatch and heavy async.
• Modern tooling (cargo, integrated testing, LLVM) streamlined

development and surfaced issues earlier in the cycle.

.

Thank you!

	Hardware Trust, Firmware Assurance: A Rust-based Root-of-Trust for Modern Secure Systems
	Motivation
	Design Goals�
	Threat Model
	Caliptra Security Subsystem Overview
	 MCU Design Highlights
	 Protocol Stack & Implementation
	Streaming Boot Flow
	Slide Number 9
	Trusted I/O for Confidential Workloads
	Evaluation
	Rust Development Experience
	Thank you!

