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Motivation
Increasing Firmware Attacks
Firmware is a growing target for sophisticated attackers seeking to 
bypass higher-level security controls

Secure-by-Design Principle
Modern platforms require robust security foundations starting from 
the hardware Root-of-Trust (RoT)

Role of Hardware Root-of-Trust
Establishes a secure and verifiable foundation for launching upper-
level firmware and software layers

Limitations of Traditional C-based RoT Firmware
Vulnerabilities such as buffer overflows, use-after-free, and 
undefined behavior are common in C, especially in privileged code

Modern RoT Firmware with Rust 
Utilizing Rust and Tock OS enhances firmware security through 
memory safety and microkernel isolation



Design Goals

Memory Safety
Mitigate vulnerabilities using Rust’s ownership model and type system.

Modularity & Isolation
Tock OS microkernel isolates components, reducing fault propagation.

Scalability
Support diverse platforms with reusable, configurable components.

Open Development
Higher security transparency and implementation visibility.



Threat Model
Adversary Capabilities

• Tamper with firmware during manufacturing or 
supply chain

• Exploit runtime vulnerabilities to gain privileged 
access

• Attempt to bypass secure boot or measurement 
mechanisms

• Interfere with cryptographic operations or key 
management

• Physical attacks (e.g., side-channel, fault 
injection)

Defensive  Focus (Firmware)
• Strict memory safety
• Process isolation
• Integrity from boot through attestation



Caliptra Security Subsystem Overview
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Fig. 1 Simplified Caliptra Security Subsystem Architecture

• Open-source, standardized hardware Root-of-
Trust (RoT) for wide range of System-on-
Chip(SoC) platforms

• Anchors secure boot, attestation, 
measurement, and cryptographic firmware 
updates and secure I/O

• MCU (Manufacturing Control Unit) 
orchestrates platform-level security and 
lifecycle management

• Hardware-backed cryptography and 
measured boot defend against supply chain 
threats and runtime attacks

• Modular design enables interoperability and 
scalability across diverse  platforms



MCU Design Highlights 
Architecture

• Open-source RISC-V
 VeeR EL2 core, SoC-agnostic design
 Modular Tock OS drivers/capsules for hardware abstraction

• Dual-stage firmware stack
 Bare-metal ROM for hardware initialization
 Runtime firmware for RoT services 

Secure RTOS Integration - Tock OS
• Rust-based microkernel
• Enforces process isolation and memory safety
• Peripheral drivers as capsules for clean separation and 

extensibility
Security Features

• Secure firmware update and attestation 
• Hardware-backed cryptographical services 
• Anti-rollback protection

Streaming Boot
• Eliminates persistent firmware storage: reducing an attack 

interface
• Streams and validates firmware at boot dynamically and 

securely
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Fig. 2 MCU Firmware Stack



Protocol Stack &  Implementation

Supported Protocols
• SPDM, PLDM, Caliptra vendor-defined messages

Async interface 
• Provide async Rust APIs for sending/receiving 

messages from userspace.
Memory-safe isolation with Tock Capsules

• MCTP base and control protocol handling.
• Virtualization: Multiple virtual MCTP drivers per 

board , each protocol assigned a unique driver 
number.

• Mux Layer: Centralizes transmission/reception, 
tags messages, manages outstanding requests

• Transport binding: Adds/removes I3C-specific 
header/trailer, handles Packet Error Code (PEC). I3C Target Driver
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Fig. 3 Protocol Stack



Streaming Boot Flow
Two-stage boot sequence for secure, 
scalable firmware delivery.
• Stage 1: Early Firmware Loading via OCP 

Recovery Protocol 
• Caliptra FMC + RT
• SOC Manifest
• MCU Runtime

Fig. 4 Simplified  streaming boot flow –stage 1 



Stage 2: Remainder Firmware 
Loading via PLDM Firmware 
Update Protocol 

• Enables modular, component-
based firmware updates and 
supports “pull” model for flow 
control and error recovery.

• Remainder-firmware is loaded 
directly into device RAM, not 
persistent storage, enabling 
secure, impactless updates and 
rapid recovery.

• Device attests to its boot state 
via SPDM, ensuring integrity and 
compliance.

Fig. 5  Simplified  streaming boot flow –stage 2 



Trusted I/O for Confidential Workloads

SPDM provides cryptographic attestation to verify device 
identity and integrity, forming the root of trust.

IDE_KM secures PCIe data in transit by managing 
encryption keys, enabling end-to-end path protection.

TDISP ensures trusted assignment and isolation of device 
resources to virtual machines, supporting secure I/O 
virtualization.

Together, they enable secure communication, hardware-
enforced isolation, and form the foundation for 
confidential computing across diverse platforms.



Evaluation 

Fully open-source design enables public auditing and repeatable builds

Adheres to industry standards (OCP, TCG, DMTF, PCI-SIG), ensuring interoperability and easy 
validation  

Rust-based firmware eliminates common memory safety vulnerabilities found in C-based RoT 
firmware .

Modular architecture supports secure boot, attestation, anti-rollback, and lifecycle 
management, surpassing legacy RoT flexibility  

Integrates post-quantum cryptography, preparing platforms for future threats  



Rust Development Experience 
Challenges

• Required a fundamental shift in development mindset and 
architecture due to Rust’s ownership model and strict type 
system.

• Initial learning curve was steep. Explicit lifetimes and borrowing 
rules demanded careful resource management.

• Embedded debugging and hardware integration posed new 
workflow challenges.

Opportunities & Advantages
• Eliminated entire classes of C bugs (buffer overflows, memory 

aliasing, dangling pointers) through strong compile-time checks.
• Rust’s async/concurrency model, combined with Tock OS 

microkernel, enabled safe, isolated, event-driven firmware tasks.
• Possible to achieve near C-level performance, optimization 

required for dynamic dispatch and heavy async.
• Modern tooling (cargo, integrated testing, LLVM) streamlined 

development and surfaced issues earlier in the cycle.

. 
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