Highly efficient Auto batch EFA

DISPONATION ON EVEN LENCE OUT

SANDISK

Oct 1, 2025

Highly efficient Auto batch EFA

Xia Ju

Senior Manager, Product Development Engineering

Defect in Nand Array

The NAND array occupies a large portion of the circuit area, resulting in most failures occurring within the array.

EFA(Electronical Failure Analysis) in Nand world

- •Purpose: Identify and characterize electrical failures in semiconductor devices or electronic components.
- •Goal: Pinpoint the root cause of failure to improve yield, reliability, and design robustness.

Data collection for Nand EFA

00.05

EFA strength(200 failure for example)

Yesterday Today Tomorrow

Automatically collect data within 0.5 day

Automatically generate failure report

Semi-Auto judge the failure mode

Repeat 200+ times, 2 Engineers 25days. Extra 7 days for failure judge.

SANDISK

One time, 1 Engineer 0.5 day. Extra 3 days for failure judge.

On the fly failure information feedback to process and device to further improve

EFA for today-Highly efficient Auto batch EFA

EFA for today-Respective EFA flows

Failure input

Die_ID	Failure Type	Cycle	Block	WordLine	String
X1_Y1_Z1	Erase fail	C1	M1	N1	P1
X2_Y2_Z2	Program fail	C2	M2	N2	P2
X3_Y3_Z3	Read fail	C3	M3	N3	Р3
X4_Y4_Z4	Erase fail	C4	M4	N4	P4
X1_Y1_Z1	Program fail	C5	M5	N5	P5
X2_Y2_Z2	Read fail	C6	M6	N6	P6

EFA for tomorrow

Intelligent EFA Powered by AI with Extensive Data Base

#