Wafer Level Packaging

John Hunt
ASE Group
October 21, 2015
Technology & Market Evolution

1970s
Aerospace
Thousands of Units

1980s
Mainframe
Millions of Units

1990s
PC (PM)
350M+ Units
Cell Phone (PP)
1.8B+ Units

2000s
Smart Computing (PMP)
10B+ Units

2010s
Internet of Things (IOT)
(PMMP)
100B+ Units
Exponential Connectivity & Big Data

2020s
We are here

Newer & Bigger Markets

© 2014 ASE Group. All rights reserved.
Drivers for Advanced Packaging

- **Drivers**
 - Small, Thin for mobile applications
 - Low cost for Consumer Products
 - Good Electrical performance
 - Low power

- **Solutions**
 - Wafer Level Chip Scale Package
 - Fanout Chip First Package
 - Fanout Chip Last Package
iPhone Trends: Increasing Number of WLPs

iPhone Evolution

<table>
<thead>
<tr>
<th>iPhone Model/year</th>
<th>WLPs</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPhone 1 2007</td>
<td>2 WLPs</td>
<td>6</td>
</tr>
<tr>
<td>iPhone 3GS 2009</td>
<td>4 WLPs</td>
<td>7</td>
</tr>
<tr>
<td>iPhone 4S 2011</td>
<td>7 WLPs</td>
<td>8</td>
</tr>
<tr>
<td>iPhone 5 2013</td>
<td>11+ WLPs</td>
<td>10+</td>
</tr>
<tr>
<td>iPhone 5S 2013</td>
<td>22 WLPs</td>
<td>13</td>
</tr>
<tr>
<td>iPhone 6 2014</td>
<td>26+ WLPs</td>
<td>15+</td>
</tr>
<tr>
<td>iPhone 6 Plus 2014</td>
<td>26+ WLPs</td>
<td>16+</td>
</tr>
</tbody>
</table>

Source: TechSearch International, Inc., adapted from TPSS.

Shown to scale
Denser & Thinner

- Apple Watch SiP demonstrates the evolution in miniaturization

Source: TechSearch, TPSS Level 2.5E July 2015
What do we mean by Wafer Level Package (WLP)?

- All IC packaging is done in wafer form
 - No handling of discrete devices during packaging assembly

- A Wafer Level Chip Scale Package (WLCSP) is a subset of WLP
 - It is a “Chip Scale (<= 1.4 X area of die)” package
 - The package is only the die - therefore it is “die size”
 - Compatible with Standard SMT Assembly Processing
 - Placed with existing SMT tools, no flipchip bonder required
 - Current Ball pitch 0.3mm – 0.5mm
 - No underfill is required, but can be used for added reliability
Wafer Level Chip Scale Package
WLCSP
The Beginning......

It started with Then And
Evolution........

1st Point Contact Transistor 1948

1st Junction Transistor 1951

WLCSP 2001

Volume
6,000,000 : 1

WLCSP 2015

Approximately to scale
WLCSP Evolution

Die Size

5x5-7x7mm
Combo/Connectivity, MCU
Wider adoption outside portable products, expect up to 8x9mm die size
Fan out and enhanced versions in HVM

5x5-6x6mm
Transceiver, Power Manager, Image Sensor, Audio Codec
Wide adoption in smartphones

4x4mm
Bluetooth, WLAN, TV Chip, Transceiver

4x4mm
Additional Device Types: Analog, IPD, MOSFET
Nokia phones with 7-8 WLCSP

1x1-2x3mm
EEPROM, MCU, Security Chips, Watches

Prismark

© 2014 ASE Group. All rights reserved.
ASE Has Multiple WLCSP Solutions

Sputtered UBM on Nitride

Sputtered Repassivation

Plated Repassivation

3-Layer Plated Redistribution

Cu UBM on Pad For Embedding

Cu UBM on RDL For Embedding

Plated Repassivation on top of UBM

4-Layer Sputtered Redistribution

4-Layer Plated Redistribution

Cu Thick RDL For Embedding

2-Layer Plated Redistribution

6-Layer Plated with 2 Redistribution Layers

Cu UBM on RDL For Embedding

But, there are more than One Hundred variations of these basic structures in production!
ASE’s Wafer Level Package Solutions

- Bumping
- ASE Wafer Level Packaging
- 3D WLP
- WLCSP
- WL IPD
- WL MEMS
ASE WLCSP Initiatives

- Larger WLCSP Packages
 - Increased Die Package size

- Improved Performance
 - Reliability - Reinforcement structures
 - Reliability - Solder Alloys
 - Current Handling Capacity

- Low Cost Structures
 - 3-Layer & 2-Layer

- Thin Package

- Improved Die Edge Quality

- MEMS/3D

- Low Cure Polymer
Reliability Factors

- Factors that improve WLP die performance
 - Solderball Pitch/Array pattern
 - Solderball Alloy
 - Die Thickness
 - Polymer/Polymer Thickness
 - RDL Material/Thickness
 - Reinforcement
ASE Large Die Development with Nokia – Phase I

- Large Die Board Level Reliability Co-Development (ASE 8x8mm – 63.2% Corner Ball)
 - Thick PI “○” and Thin Die “◇” can enhance both TC and Drop
 - Thick RDL “◇” can enhance the drop only

![Diagram showing TCOB and Drop comparison](image-url)
Large Die Development with Microsoft - Phase II

- Phase II co-development with ASE & Microsoft

<table>
<thead>
<tr>
<th>Variable</th>
<th>Polymer 1</th>
<th>P1 Thickness</th>
<th>Cu RDL</th>
<th>Polymer 2</th>
<th>P2 Thickness</th>
<th>Cu UBM</th>
<th>Solder</th>
<th>Die Thickness</th>
<th>BSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Standard</td>
<td>PI</td>
<td>Std</td>
<td>Std</td>
<td>PI</td>
<td>Std</td>
<td>Std</td>
<td>Std</td>
<td>Std</td>
<td>Yes</td>
</tr>
<tr>
<td>2 Thick Dielectric & Thin Die</td>
<td>PI</td>
<td>Thk</td>
<td>Std</td>
<td>PI</td>
<td>Thk</td>
<td>Std</td>
<td>Std</td>
<td>Thk</td>
<td>Yes</td>
</tr>
<tr>
<td>3 M758 Solder</td>
<td>PI</td>
<td>Std</td>
<td>Std</td>
<td>PI</td>
<td>Std</td>
<td>Std</td>
<td>Alloy A</td>
<td>Std</td>
<td>Yes</td>
</tr>
<tr>
<td>4 Superset</td>
<td>PI</td>
<td>Thk</td>
<td>Std</td>
<td>PI</td>
<td>Thk</td>
<td>Std</td>
<td>Alloy A</td>
<td>Thin</td>
<td>Yes</td>
</tr>
<tr>
<td>5 Optional</td>
<td>PI</td>
<td>Thk</td>
<td>Std</td>
<td>PI</td>
<td>Thk</td>
<td>Std</td>
<td>Alloy A</td>
<td>Std</td>
<td>Yes</td>
</tr>
<tr>
<td>6 PBO Effect</td>
<td>PBO</td>
<td>Std</td>
<td>Std</td>
<td>PBO</td>
<td>Std</td>
<td>Std</td>
<td>Alloy B</td>
<td>Std</td>
<td>Yes</td>
</tr>
<tr>
<td>7 SACQ Solder</td>
<td>PI</td>
<td>Std</td>
<td>Std</td>
<td>PI</td>
<td>Std</td>
<td>Std</td>
<td>Alloy C</td>
<td>Std</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Conditions Color
- Reference
- Variables
- All Variables

© 2014 ASE Group. All rights reserved.
ASE Large Die Development – Phase II Results

1st Fail

1. Standard
2. Thk Diel & Thin Die
3. Alloy A
4. Superset
5. Thk Diel & Alloy A
6. PBO
7. Alloy C

63.2% Fail
WLCSP Structure Developments

- **Solderball Pitch**
 - Production – 0.5, 0.4, 0.35 & 0.3mm pitch
 - Internally Qualified: – 0.2mm pitch

- **RDL Lines/Spaces**
 - Production:
 - L/S 10/10um - 4um thk Cu RDL
 - L/S 20/8um - 10um thk Cu RDL
 - Qualified:
 - L/S 5/5um - 4 & 9um thk Cu RDL
 - L/S 2/2.5um - 3um thk Cu RDL

- **Multiple RDL**
 - 2 RDL Layers in Production
 - 3 RDL layers Qualified
Cost Reduced WLCSP Structures

3-Layer WLCSP – Elimination of UBM
- Solderball dropped directly on RDL
- Eliminates 2nd metal layer
- Reduces Price & Cycle time

2-Layer WLCSP – Eliminates Polymer 1 & UBM
- Solderball dropped directly on RDL
- Eliminates 1st Polymer & 2nd metal layer
- Further Reduces Price & Cycle time
- Limited to small die <2x2mm

4-Layer with UBM (Large Die)
3-Layer No UBM (Medium Die)
2-Layer No Polymer/UBM (Small Die)
Embedded WLCSP

- Thick (>=10µm) Copper UBM for Laser Processing after embedding
- Developing die thinning to 50µm
- ASE developing total embedded die solutions
 - Thick Copper UBM & Thin Die
 - JV with TDK for SESUB Embedded Packages
 - ASE in production with embedded die for packages & modules
 - ASE in production with SIP Assembly in Embedded packages
Wafer Level IPDs

- Resistors, Capacitors, Inductors and integrated arrays
- Modeling, simulation, measurement
- Wafer Level or Modules
- Joint Activity with

[Images of various electronic components and layouts]
Example WL IPD Simulation vs. Measurement – Bandpass Filter

- **BPF layout**

![BPF layout image]

- **BPF spec**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Spec</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>2.4</td>
<td>2.5 GHz</td>
</tr>
<tr>
<td>Port Impedance</td>
<td>50</td>
<td>Ohm</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>2.4</td>
<td>dB</td>
</tr>
<tr>
<td>Return Loss</td>
<td>10</td>
<td>dB</td>
</tr>
<tr>
<td>Attenuation @ 824~960MHz</td>
<td>30</td>
<td>dB</td>
</tr>
<tr>
<td>Attenuation @ 1710~1980MHz</td>
<td>30</td>
<td>dB</td>
</tr>
<tr>
<td>Attenuation @ 4800~5000MHz</td>
<td>20</td>
<td>dB</td>
</tr>
<tr>
<td>Attenuation @ 7200~7500MHz</td>
<td>20</td>
<td>dB</td>
</tr>
</tbody>
</table>

- **BPF performance comparison**

![BPF performance comparison graph]
Wafer Level MEMS

- WL MEMS as single WLCSP or as Die to Wafer Assembly

Oscillator MEMS on ASIC – D2W
WLP Die to Wafer Assembly

Mother die

- Bumping Mother
- WLCSP1 Mother
- Flip Chip On Wafer
- Wafer Probe
- Wafer Saw
- PNP
- Ship out

Child die

- Bumping Child
- WLCSP 1
- Grinding Child
- Wafer Saw Child
- Flip Chip
- Test

Grinding Child

MEMS Die to Wafer WLCSP with Solder Bumps

IPD Die to Wafer WLCSP with Cu Pillars
WLCSP D2W MEMS
WLCSP D2W IPDs & Hybrids

- WLCSP D2W IPDs

- WLP D2W Hybrid FC & Wirebond Wafer

- WLP D2W Hybrid FC & Interposer Wafer
ASE MEMS 3D WLP

TSV last manufacturing capability
- Temporary or permanent wafer bonding
- DRIE of TSV last
- Via isolation & Cu fill
- Passivation and RDL

Wafer Level Molding:
- Wafer scale molding after either FC or WB (compression molding)

Wafer Level Processing:
- Passivation, RDL & UBM
- Ball Attach
- Laser marking
- Dicing

Wafer to wafer bonding (device capping):
- Top wafer: Si, Glass, active die wafer (dev)
- Bottom wafer: Si
- Bonding technology: polymer, glass frit
- On going (dev): metal bonding (solder, eutectic)
- Thin film capping, wafer scale plastic lid (under survey)

Die attach (MEMS or ASIC) to wafer (MEMS or ASIC):
- WB (tape attach), Au wires
- FC attach MR or TCB, solder or Cu pillar, NCP or CUF

Images:
- Receiving wafer w or w/o carrier
- Molded wafer after die to wafer attachment
- TSV last manufacturing capability diagram
- Wafer Level Molding diagram
- Wafer Level Processing diagram
- Wafer to wafer bonding (device capping) diagram
- Die attach (MEMS or ASIC) to wafer (MEMS or ASIC) diagram
3D MEMS WLP Benefits

Area 25 – 77% Reduction

- **PKG** 30%
- **WLP** 70%

Height 11 - 40% Reduction

- Mold LGA
 - 30%
 - 74%

- Open Cavity LGA
 - 29%

- Cavity DFN
 - 40%

- 2 dice solution
 - 27%
ASE TSV last solution for MEMS & Sensors

Process 100% done by ASE, current production on 200mm

1. Shorter Development time. (OSAT Learning curve only)
2. Larger TSV size (>30 um)
3. Liability is clear

TSV last with polymer isolation:
- Isolation thickness up to 10um
- Good electrical performance & low leakage
- Good sidewall conformity & uniformity
- Low process temperature (below 250°C)
- Low via / Si stress
- Minimized warpage

HVM on 200mm environmental sensor, with high yield and reliability
Fan out Technology
Drivers for Fan out – Advanced Nodes

- **Die Shrinkage**
 - Advanced Technology nodes allow die shrinkage
 - Increased die per wafer & lower die price
 - But - Less die area for Ball placement
 - Fan out allows expansion of ball placement area beyond die borders
 - Fan out cost offset by lower die pricing
 - Retain Ball footprint of larger die WLCSP

- **Multi Die**
 - Advanced Technology nodes increases wafer cost for high technology nodes
 - Not all die functionality benefits from advanced nodes
 - Fan out allows Partitioning of functionality within a package
 - Digital functions can use advanced technology nodes
 - Analog, Power, MEMS, IPDs can use lower technology nodes
 - Fan out allows these various nodes to be embedded in same package
Drivers for Fan out – SiP is Ultimate Goal

- Fan Out SiP - Multi Die & Passives
 - Fan out allows Partitioning of functionality within a package
 - Digital functions can use advanced technology nodes
 - Analog, Power, MEMS, and IPDs use other technologies
 - Fan out allows these various nodes, components, and passives to be embedded in same package
ASE Fan out Strategy

Chip First – Embedded Chips

Cost Driven
- Panel Fan out (In Development)
- Fan Out Chip Last

Median Level
- SESUB Embedded Package
- Wafer Level Fan out
- Fan Out Chip Last

Performance Driven
- High Density
- Wafer Level Fan out
- 2.1/2.5/3D Package
- Wafer Chip Last

Technology
- Low
- Middle
- High

Driver

Chip Last – Flip Chip
- ~12µm L/S
- ~8µm L/S
- ~2µm L/S
Die are embedded in a “Reconstituted” plastic wafer that is processed like a Silicon wafer.
FOWLP eWLB Basic Process Flow

1. **Wafer Saw**

2. **Wafer Redistribution**

3. **Wafer Reconstitution**

4. **aWLP Package with Solder Balls & Singulated**
Evolutionary Paths for FOWLP

- Single Die aWLP (HVM)
- Multi Die 2D with Passives FOWLP (Prototype)
- Multi Die 2D FOWLP (Qualified)
- Double sided 3D FOWLP Module Assembly (Prototype)
- Double sided 3D FOWLP Package on Package (Prototype)
Advanced FOWLP (WL Fan Out Chip on Substrate - FOCoS)

- Structure is an Advanced Flip Chip BGA package using Fan out
- Alternative to 2.5D Silicon Interposer technology
- Initial Application
 - MultiDie in aWLP on FC Substrate
 - 16nm & 28nm Die
 - > 40 x 40mm Package
 - SnAg Bumps
 - I/O > 1000
 - Lines/Spaces <3/3µm
 - 3 RDL layers
FOWLP II PoP Chip First

○ Structure
 - Face-up Reconstitution + 3 RDL + UBM (X2)

*The drawing is not shown to scale
FOWLP II PoP Simplified Process Flow

150um Cu post (pitch/UBM = 0.3/0.1mm) RDL build-up on carrier with sputtered layer

Face up Reconstitution Process

Surface Grinding
Si/Cu post = 100/15um

RDL Side 2 Process

Ball Mount + SMT

Carrier DeBonding

Cu post = 150um
FOWLP – Fan Out Wafer Chip Last

- Die bumped with Copper Pillars
- RDL Trace pattern formed on 300mm Wafer carrier
 - Multi-Layer
 - 2µm/2.5µm Lines/Spaces
- Die to Wafer Flip Chip Mass reflow bonding
- Over mold to encapsulate and underfill die
- Wafer Level Backend processing
Fan Out Wafer Chip Last

Single Sided
- RDL on Carrier Wafer
- Flip Chip Die on Carrier
- Overmold Carrier
- Remove Carrier, Drop Solderballs

Double Sided
- RDL on Carrier Wafer
- Plate Copper Pillars
- Flip Chip Die on Carrier
- Overmold Carrier
- Grind to expose Cu Pillars
- Plate RDL on Top Surface
- Remove Carrier, Drop Solderballs
- Package on Package (POP)
- System in Package (SIP)
Fan Out Wafer Chip Last (FOWCL)

- **Advantages**
 - Known good die process before C2W
 - No die bond shift and wafer warpage
 - No need for low temperature cure dielectric material

- **Properties**
 - Embedded Silicon w/ molding compound surrounding (6-side)
 - Supports fine L/S to 2/2.5um, package size > 20x20mm

- **Applications**
 - Mid-end: AP/Baseband + RF/Analog, PMIC
 - High-end: Networking, GPU, APU

- **Fan Out Chip Last SiP**
 - > 50 Active & Passive components
Fanout Enables High Density SiP

- ASE is evolving new packaging innovations for miniaturization, performance, and cost improvements.
Fab Fanout SiP vs ASE Advanced Fan Out SiP

FAB Model

- Single-Sourced Die
 - Die 1 40nm Fab1
 - Die 2 28nm Fab1
 - Die 3 14nm Fab1

ASE Model

- Multi-Sourced Die
 - Die 1 40nm Fab1
 - Die 2 28nm Fab2
 - Die 3 14nm Fab3

- Multi-Sourced Components

- Multi-Sourced Passives

Single-Sourced Heterogeneous SiP
Fab Fanout SiP vs ASE Advanced Fan Out SiP

FAB Model

ASE Model

ASE’s Model allows greater versatility for SiPs
Ultimate Packaging Convergence

- Wirebond
- Substrates
- Flip Chip
- WLCSP
- Fan Out
- Embedding
- MEMS
- IPDs
- 2.5D & 3D
- Shielding
- Antennas

SiP
Thank You

www.aseglobal.com