Role of Memory in Future Compute Architectures
A Story of Technology Disruption

Alper Ilkbahar
SVP
Western Digital Corporation
Forward-looking Statements

Safe Harbor | Disclaimers

This presentation contains forward-looking statements within the meaning of federal securities laws, including statements regarding expectations for growth opportunities, market trends and technological advancements. These forward-looking statements are based on management’s current expectations and are subject to risks and uncertainties that could cause actual results to differ materially from those expressed or implied in the forward-looking statements.

Material risks and uncertainties include volatility in global economic conditions; future responses to and effects of the COVID-19 pandemic; impact of business and market conditions; the outcome and impact of our ongoing strategic review, including with respect to customer and supplier relationships, regulatory and contractual restrictions, stock price volatility and the diversion of management’s attention from ongoing business operations and opportunities; impact of competitive products and pricing; our development and introduction of products based on new technologies and expansion into new data storage markets; risks associated with cost saving initiatives, Restructurings, acquisitions, divestitures, mergers, joint ventures and our strategic relationships; difficulties or delays in manufacturing or other supply chain disruptions; hiring and retention of key employees; our level of debt and other financial obligations; changes to our relationships with key customers; disruptions in operations from cybersecurity incidents or other system security risks; actions by competitors; risks associated with compliance with changing legal and regulatory requirements and the outcome of legal proceedings; and other risks and uncertainties listed in the company’s filings with the Securities and Exchange Commission (the “SEC”), including the company’s Form 10-K filed with the SEC on August 25, 2022, to which your attention is directed. You should not place undue reliance on these forward-looking statements, which speak only as of the date hereof, and the company undertakes no obligation to update or revise these forward-looking statements to reflect new information or events, except as required by law.
Semiconductor Industry at a Glance

Memory
(DRAM, NAND, Emerging & others)

28%

Source: Gartner - Semiconductor Market Share Report, 2020-2021
Semiconductor Industry at a Glance

2021

- Memory (DRAM, NAND, Emerging & others) - 28%
- Application specific (RF wireless connectivity, power management & others)

2030 Forecast

- Memory (DRAM, NAND, Emerging & others) - 34%
- Application specific (RF wireless connectivity, power management & others)

Source: Gartner - Semiconductor Market Share Report, 2020-2021

Source: WD Forecast from Gartner – Semiconductor Market Share Report, 2020-2026
Moore’s Law: Wave that propels our industry
2000s – Disrupting Flash Memory

$150 in 2001

10x better

Source: TechTarget [25 Mar 2020]
No Exponential Lasts Forever
2010s – Disrupting Flash Memory…Again
Long Live NAND

Log [TB/Wafer]

Time

2016

2032

500+L

400+L

300+L

200+L

162L

112L

96L

64L
Moore's Law Slowing for Logic
Moore’s Law Slowing for Logic

Scaling continues through advanced packaging
Moore’s Law Slowing for Logic

Scaling continues through advanced packaging

Source: OCP Global Summit: "Software Defined Memory: A Meta Perspective"
DRAM NOTaling

- Moore’s Law
- Avg. DRAM Density Shipped
 - 1979-2003: 51% CAGR
 - 2003-2011: 29% CAGR

DRAM Density Gap is Increasing

- 1TB
- 512Gb
- 256Gb
- 128Gb
- 64Gb
- 32Gb
- 16Gb
- 8Gb
- 4Gb
- 2Gb
- 1Gb
- 512Mb
- 256Mb

- 8Gb – 15 years behind Moore’s law
- 4Gb – 12 years behind
- 2Gb – 8 years behind
- 1Gb – 5 years behind
- 512Mb – 3.5 years behind
- 256Mb – 3 years behind Moore’s law

Source: Quantifying the Performance Impact of Memory Latency and Bandwidth for Big Data Workloads, Russell.M.Clapp et al, 2015 IEEE International Symposium
Memory Wall

Increasing Core Counts Drives Growth

- Increasing core counts driving memory demand
 - Increased Bandwidth
 - Increased Capacity

Increasing Memory Cost and Power

- Memory an increasing % of system power and cost
 - Memory price (cost/bit) flat due to scaling challenges
 - Memory power scaling with speed

Source: OCP Global Summit: "Software Defined Memory: A Meta Perspective"
2015s – Disrupting DRAM

- DRAM
- HOT
- 3D NAND
- WARM
- HDD
- COLD
2015s – Disrupting DRAM

- S/W ecosystem takes long time to build
- New silicon technology development exorbitantly expensive
- Large scale deployments require consistent performance
- Memory attach point critical to performance

Intel® Optane™ Persistent Memory
Solving Attach Point Problem: CXL

Direct Attached

- CPU
- DDR
- Native DRAM
- CXL
- CXL Memory Module

Memory Pooling and Sharing

- Computer Node
- CPU 0, CPU 1
- Memory Node
- M
- CXL Pooling Memory Controller
- CXL

Memory Centric Compute

- Memory + Fabric
- SoC
- Memory Fabric
- CPU
- Memory Node
- CPU 0, CPU 1
- DDR
Performance with CXL-Attached Memory

Performance slowdown under additional 64ns memory latency

One size does NOT fit all

Source: First-generation Memory Disaggregation for Cloud Platforms, Huaicheng Li et al, Mar 2022
Solving The Performance Problem

S/W Driven
- APP
- Native DRAM
- CXL Memory Module

H/W Driven
- Native DRAM
- CXL Memory Module
- IO Die

M/W Driven
- APP
- MIDDLEWARE
- Native DRAM
- CXL Memory Module

Logos:
- SAP HANA
- pmem.io
- Intel Xeon Scalable Processor
- VMware
- Meta
- Microsoft Azure
- MemVerge
Solving The Cost Problem

Conventional DRAM

Modified DRAM

New Memory Technology
Solving The Economics Problem

Incumbents Venture Capital Customers Government
Where will the tide take us?
Western Digital
Create What’s Next
Performance with CXL-Attached Memory

Bandwidth demand vs latency sensitivity

Source: Quantifying the Performance Impact of Memory Latency and Bandwidth for Big Data Workloads, Russell.M.Clapp et al, 2015 IEEE International Symposium