Test Challenges in Advanced Designs and Technology

Janet Olson
Vice President, Research & Development
Overview

• Today’s designs require knowledge and co-optimization of test and design

• Test offers new differentiators to the design flow for high reliability and safety-critical applications

• An integrated test and design flow delivers the least power, area, congestion, and timing impact while minimizing test time
Advanced Design and Test
Exciting Growth for Semiconductor

Source: Impact of AI on Semiconductors, International Business Strategies (IBS), February 2022

12.9% CAGR

2021 2022 2023 2024 2025 2026 2027

Semiconductor Market ($B)

$510B $560B $613B $671B $736B $883B $1T

Source: Impact of AI on Semiconductors, International Business Strategies (IBS), February 2022
What’s Driving Semiconductor Growth?

Automotive

- 50% EVs
 - U.S. Gov’t 2030 initiative
- $1200 BOM
 - Semiconductors per car
- 19TB/hour
 - Generated vehicle data

Hyperscalers

- 1,500ZB
 - Global data generated in 2027
- 50X
 - ML model complexity growth every 18 months
- $45B
 - 2027 AI processors revenue

Source: Synergy Research Group (SRG) Dec 2020 and Cadence estimates
Source: Omdia AMFT Q1 2022
Enabling Technology Is Critical to Sustain Growth

Automotive

- Reliability, Safety, and Security
- Power, EMI, Thermal
- Computing Performance
- Scalability, Cost
- HW/SW Complexity
- E/E Architecture
- In-Vehicle Networking
- 5G, Cloud Computing

Hyperscalers

- Custom Silicon
- Adv Node
- Latest IP Protocols
- Adv Packaging
- Multiphysics
- System-Level Optimization
Mixed-Signal Design Trends – Flexibility and Interoperability

Test challenge:
How to integrate and program mixed-signal IP?
Test Challenges
Design Convergence and Test – Historical View

PPA Convergence

Historical Goal

Schedule

DFT

Historical Goal
Design Convergence and Test – Modern View

PPA Convergence

- Historical Goal
- Modern Goal

DFT

Schedule

- Modern Goal
- Historical Goal
Test Challenges

- Test and physical design
- Analog design test requirement
- Test points without PPA impact
- Test-aware ECO
Test Challenges

- Test and physical design
- Analog design test requirement
- Test points without PPA impact
- Test-aware ECO
Test and Physical Design Impacts – Existing Solutions

- Routing congestion
 - Example: Scan compression logic

- Power, timing, and area impacts
 - Example: BIST logic
Test and Physical Design – New Solutions

• **Innovus™ and Virtuoso® solutions** – Gold standard for physical design

• Test integrated with design flow – optimize *inside* the flow, not outside

 o Example: Modus 2D Elastic Compression
Routability as a Compression Limiter – Traditional Routing

- CoDec logic (compression and decompressor) placed in middle of the design
- Scan channel heads/tail wires are fed from/to CoDec
- As more channels are added the more channel head and tail wires are needed
- Creates “cross-bar” congestion

More channels = more wirelength to/from CoDec
• CoDec spread throughout the design
 - Grid structure spread compression scan data
• Connects locally with the scan channel heads/tails to minimize wiring
• Grows with the compression ratio to ensure local scan channel connections
• Less growth than using a centrally located CoDec and removes “crossbar” congestion
Industrial Results – 2D Compression

- 2D compression logic forms a 2D grid across the chip
- Up to 2.6X less routing resource than traditional 1D XOR compression

Industrial example:
14.35% lower scan wirelength, 1.38% lower total wirelength, 1.26% lower density, Consistent TNS improvement
Logic BIST and Scan Compression – Extending 2D

• Traditional – Discrete
 - Cell area and routing penalty
 - Cannot achieve short channels due to routing congestions

• Unified LBIST and 2D Scan Compression
 - Brings physical benefits of 2D grid to LBIST
 - Shorter channels = faster LBIST
 - 47% lower area, 75% less routing, 50% faster LBIST
Test Challenges

• Test and physical design

• Analog design test requirement

• Test points without PPA impact

• Test-aware ECO
Example: IoT Medical

• Requirements:
 - Heavy mixed-signal content – cannot separate digital/analog cleanly
 - Ultra-low power – longer battery life
 - Advanced process nodes – new reliability and quality challenges
 - Complex packaging – silicon/package/board co-design

• Test challenges:
 - Lower power from in-system test
 - New fault models and test cost mitigation
 - Mixed-signal and packaging test constructs and methodology
 - Integration with custom and standard cell-based physical design

AMS circuitry typically occupies 20% of the area but incurs 70% of the test cost and 45% of the DFT/test effort
Integrity 3D-IC – Integrating Leading P&R and Package Solutions

- Integrated 2.5/3D design planning and implementation
 - Multi-Die
 - Interposer
 - Package

- Multi-die capacity

- Enables co-design with Innovus, Virtuoso®, and Allegro platforms

- 3D analysis and signoff to enable system-driven PPA

- Full integration with Modus DFT/ATPG
Mixed Signal Test – Standardization and Automation
Moving into the future

• Standard for describing **analog test access and control** (IEEE P1687.2)
 o Address issue with IP integration and mixed signal complexity
 o Build off IEEE 1687 ICL/PDL

• Standard for analog **defect modelling and coverage** (IEEE P2427)
 o No universally accepted fault models as in digital
 o Analog test becomes defect-oriented structural approach, based on defect models

Automation Only Possible with Standardization
Test Challenges

- Test and physical design
- Analog design test requirement
- Test points without PPA impact
- Test-aware ECO
Test Points

• Surgical modification of logic to meet a test goal
 o Observe/control

• Examples:
 o Improved LBIST coverage
 o Meet delay test goals without test cost explosion

• Requires design context – **power, area, timing**
 o Common engines with physical design
 o Risk disturbing existing design convergence
Physically Aware Test Points – Modus and Innovus
Area and routing congestion solution for test-critical designs

- Sharing control and observe test points – reduces # TPI needed
- Repartitioning the test points when the design is optimized in iSpatial and Innovus™

Industrial example:
4X improvement in TPI wirelength
Test Challenges

- Test and physical design
- Analog design test requirement
- Test points without PPA impact
- Test-aware ECO
Test-Aware ECO

- ECO is part of the mainstream design process
 - Enables faster design closer
 - Addresses design issues with limited PPA impact
- Test logic required to be preserved and validated through ECO process
 - Required for minimal design change
 - Traditionally a manual process to re-stitch test logic

- **Conformal® ECO – Industry-standard ECO**
 - Automatically preserves original scan chains
 - Validates scan chain correctness
 - Extensible to other test logic

Growing trend of Functional ECOs
Test in Full Flow
Best-in-Class Analog and Digital Design

• Cadence has dominance in both analog and digital implementation
 o Innovus™ Implementation – Physical design platform of choice for advanced node designs
 o Virtuoso® Platform – Industry gold standard for custom design
 o Conformal® ECO – The only solution for automating complex ECOs

• Native bridge between analog/digital – MSOA
 o Seamless editing in cockpit of choice
 o Tempus™ Timing – Mixed-signal STA
 o Voltus™/Voltus-Fi Power – Full SoC power integrity

The Flow of Choice for Test Integration
Summary

• Today’s designs require knowledge and **co-optimization of test and design**

• Test offers **new differentiators** to the design flow for high reliability and safety-critical applications

• An **integrated test and design flow** delivers the least power, area, congestion, and timing impact while minimizing test time