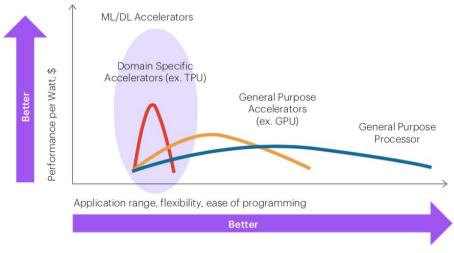

27 APR 2023

Can I own my AI?

Al semiconductor clearly sees a strong momentum



Al chip technology is evolving rapidly, Gartner estimates that more than 50 companies are making chips specifically for Al, and Al-specific chip revenue is expected to reach \$76.8 billion by 2025

Let's look at several key trends for AI SoCs

- Accelerator-based designs: <u>Domain Specific</u> IP for training and inference work <u>more efficiently</u> than general-purpose CPUs and GPUs.
- Al at the Edge: Growing trend towards processing Al workloads at the edge prioritize low-power and smaller die size
- Memory Architecture: Reduced Latency is the holy grail in Al workloads. Chip designs are increasingly focused on optimizing memory architecture/choices
- Hybrid architectures: Migration of AI chips using combination of different types of accelerators to optimize performance for specific AI workloads – chiplet opportunity
- Increasing performance: Demand for performance of AI chips (training), both in terms of die size, raw compute power and energy efficiency are driving innovation in chip design, materials science, and cooling technology.

Source: GSA AI whitepaper, Dell

Choosing the Correct Memory: Comparison Data

Parameter	LPDDR4x	LPDDR5	DDR4	GDDR6	НВМ2Е
Bandwidth (Gbps)	Low-Medium (136)	Medium (204)	Medium (200)	High (512)	Highest (3686)
Data Rate (Gbps)	4.266	6.4	3.2	16	3.6
Interface width (bits)	32	32	64	32	1024
Board Area / System Design	Large / Medium	Medium/ Medium	Large / Easy	Medium / Medium	Small / Complex
Efficiency (mW/Gbps)	High (3)	High (3)	Moderate (10)	Moderate (10)	Highest (2)
Cost (\$)	Medium	Medium	Low	Medium	High
Reliability/Yield	Good	Good	Good	Good	Moderate
Applications	Mobile, Al	Mobile, Al	Compute, Network	AI, Graphics, Auto	AI, HPC, Network

Source: Rambus

The AI Chip Revolution has begun.....

More effort and partnership collaboration is required to realize IDEAS and INNOVATION into Silicon

So...Can I OWN my AI?

Cost of designing custom silicon is too prohibitive

\$\$\$ - EDA tools, IP licenses, people.....

cost my Al

I need to have my silicon in months and not years

Too much risks – unproven IP new design flows etc

I don't have the right team

Combletic

It's just too hard!

Multi touch points (EDA, IP, Foundry, OSATs etc...)

We need to get more specialized chips

... but we cannot!

No way I can risk **\$20M upfront** and **spend 2 years**before I get the first MVP!

\$20M+

Design NRE
\$10M

Upfront IP
License
\$5M

Fab cost \$5M

Upfront cost

on Chip Owner on Design House **Application Specs** Physical Implementation Physical Design **Custom Domain IP** SoC Specs PKG Architecture **Key IP Configuration Verification Requirements** HW/SW Bring-up **Duplicated Efforts**

Dependency

Is there opportunity to reduce duplicated efforts?

Need to Dramatically Enhance Design Reusability in Chip Design

on Chip Owner

Application Specs

Custom Domain IP

Unique Value

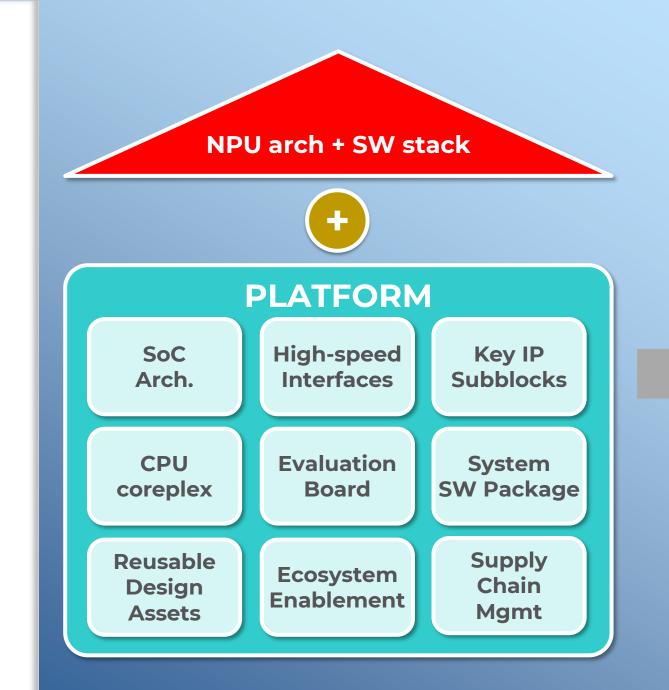
Reusable Efforts

on Design Platform

SoC Specs

Architecture

Key IP Configuration


Verification Requirements

HW/SW Bring-up

Physical Implementation

Physical Design

PKG

Platform-based Al Chip Development

Our answer: Platform-based Al solution

Lower Development Cost

- Up to 50%+ lower* (vs industry average)
- Cost reduction for design NRE, Fabrication & IP licenses

Rapid Time to Market

- Up to 50%+ shorter* than industry average
- Maximize design / verification component reusability

Reduced Engineering Risk

- Pre-verified IPs and Silicon-proven Platform
- End-to-end solution with expertise from architecture consulting to PKG/Test/SW Bring-up

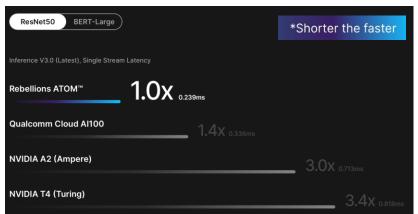
Platform

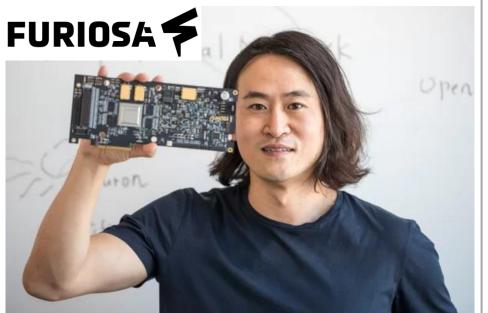
SEMIFIVE

Design

Simplest Engagement Model

- SEMIFIVE manages entire silicon design and manufacturing process (IP, EDA, Foundry, OSAT, etc)
- Customer can solely focus on their own technology/idea.


^{*} Case with maximum reuse of SEMIFIVE's platform SoC



Enabling innovators & disruptors to realize differentiated AI silicon

Source: Rebellions

Source : FuriosaAl

Kick off to Tapeout in just
6 months!

11

Examples: Platform-based AI chips taped out at Samsung Foundry

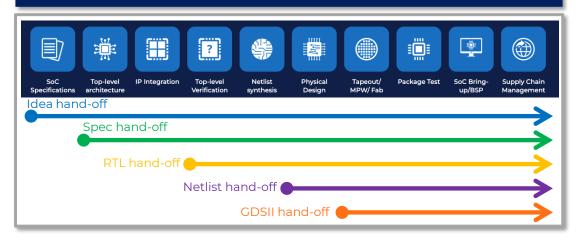
Al Inference SoC platform **HPC AI SoC platform AIoT SoC platform 14nm 14nm** 5_{nm} CPU Peripherals System System CPU **Peripherals** CPU Peripherals System Debug/Trace OTP UART v2 OTP Debug/Trace QSPI x2 Debug/Trace U74 32KB L1CC IRQ U74 32KB U74 32KB RTC SPI x4 GPIO x96 A53 32KB LICC A53 32KB OTP A53 32KB GPIO x64 32KB LICC DMA LICC IRQ GPIO x64 LICC 12C x4 WDT WDT DMA UART x2 12C x2 2MB L2CC 2MB L2CC 512KB L2CC DMA SRAM I2C x2 WDT OSPL x2 PVT SRAM 12S x2 SRAM **Customer IP Customer IP Customer IP** PWM x2 PVT PWM x4 HCA PWM 4ch x1 PVT High ligh Performance **High Performance High Performance High Performance** High **Interleaved Memory System** Performance Interleaved Interfaces Performance Interleaved Memory System **Interface Memory System** Interface LPDDR4 LPDDR4 LPDDR4 LPDDR4 MIPI CSI eMMC SDIO LPDDR4 GDDR6 GDDR6 GDDR6 GDDR6 Controller PCIE Gen4 (8Lane) Controller Controller Controller Controller PCIE Gen5 (16Lane) I PDDD4 x32 4266 **PCIE Host** x32 4266 x32 4266 x32 4266 PCIE Host Camera Target market/application Target market/application Target market/application Data center accelerator Consumer (e.g., wearables) Hyperscale Data Centers Al Vision processor **Cloud Servers** Surveillance and Smart Security Big data analytics Smart home **Network Processors** Image/Video recognition Industrial IoT (incl smart factory) High performance AI accelerators ADAS with real time processing Robotics First pass silicon success. 2nd TO In mass production! 2 additional DWs TO completed. Engaging multiple using same platform completed in 1023 customers

SEMIFIVE ASIC designs with other Tierls / Set / OEMs companies

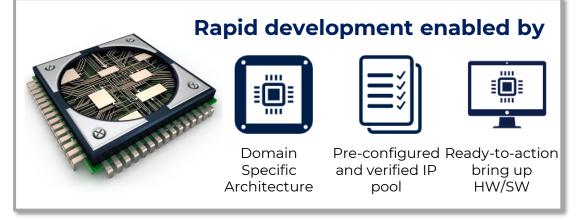
Project	Application	Samsung Foundry Process node	Die Size
А	AI SoC	14nm	~ 200mm²
В	AI SoC	14nm	~ 200mm²
С	AI SoC	5nm	~ 150mm²
D	AI SoC	14nm	~ 200mm²
Е	AI IOT	14nm	~ 80mm²
F	AI CV	8nm	~ 40mm²
G	5G Network	4nm	~ 300mm²
Н	Energy SoC	4nm	~ 20mm²

SEMIFIVE - A little about us

"New Global Hub of Custom Silicon"


- ☐ Founded in 2019, completed 4 acquisitions*
- Engineering focused with 340+ Engineers
- ☐ USD\$150M raised (up to Series B)
- ☐ Engineering team Experience 250+ tapeouts
- SEMIFIVE has 10+ T/O on adv FinFET (14/8/5nm)
- Official Samsung Foundry SAFE DSP

* Sesol Semi, Dahsim Semi (2019), Hanatec (2021), AnalogBits (2022)


We are global and growing

Flexible end2end turnkey ASIC service

Unique SOC Platforms

Can I own my AI?

- ☐ Tremendous AI market and application opportunities
- More effort needed to address challenges in design architecture, memory optimization/options, latency, hybrid solutions etc
- ☐ We need tighter collaboration between idea creators, system innovators, chip designers, silicon providers to software teams

□ And YES! You can own your AI with SEMIFIVE

THANK YOU

New Global Hub of Custom Silicon

More information can be found at our new website

www.semifive.com

