Analog / Mixed-Signal Working Group

  • Overview
  • Meeting Schedule
  • Presentations
  • Minutes
  • News
  • Projects
  • Checklists


What's New in this Group?

Analog / Mixed-Signal (AMS) technologies are critical components of semiconductor development. Real world data is inherently analog in nature and must be converted to digital signals for computational analysis. Fueled by tremendous advancements in process technologies,  mixed signal applications are among the fastest growing market segments within the semiconductor industry today. But with these advanced process technologies come new challenges to mixed signal design: analog-digital co-design, functional verification, test, and modeling on the technical side and resource management and collaboration among design teams and partners on the human side.


Promote the discussion, information exchange, and collaboration impacting both the technical and the human resource challenges that the AMS industry is facing, in order to have a positive impact on industry growth and profitability.


Provide a non-competitive forum for the AMS community to explore and discuss critical aspects of successful AMS  implementation including scaling, integration, DFM, verification, test, and power efficiencies and identify key elements that can improve efficiencies, design productivity, and profitability.

  • Improve AMS development environment through joint efforts leading to widespread adoption of interoperable PDK.
  • Generate AMS checklists that improve user understanding of foundry offerings and needs (PDK, PCM, …), while minimizing errors and improving interaction between foundries and fabless designers.
  • Discuss novel and creative approaches to closing the gap between digital and analog design.
  • Identify opportunities for enhanced integration and modularization capability: advanced packaging, SoCs, MEMS, etc.
  • Explore improved modeling techniques, such as RF Modeling, Analog Modeling with FinFET technology.

Contact Information

Harrison Beasley
Director, Technology

AMS Working Group Chair
Dr. Abhijit Gupta, Director, Foundry Technology, SanDisk

Meeting Schedule

What's New in this Group?
Q2 2014 Meeting

AMS Working Group
Date: May 7, 2014
Time: 2:00 p.m. – 5:00 p.m.
Location: Microsemi

Overview and Registration

Q3 2014 Meeting

AMS Working Group
Date: August 20, 2014
Time: 2:00 p.m. – 5:00 p.m.
Location: Silicon Valley

Q4 2014 Meeting

AMS Working Group
Date: November 12, 2014
Time: 2:00 p.m. – 5:00 p.m.
Location: TBD

Q1 2015 Meeting

AMS Working Group
Date: February 18, 2014
Time: 2:00 p.m. – 5:00 p.m.
Location: TBD


What's New in this Group?

Feb 20, 2014

  • AMS WG Overview (PDF, 446 KB) / Harrison Beasley, GSA
  • The Future of Mixed-Signal Verification  Helene Thibieroz, Synopsys
  • Mixed-Signal IP Verification on Advanced Process Nodes, Bob Lefferts, Synopsys

Nov 14, 2013

Aug 21, 2013

May 15, 2013

Feb 13, 2013

Nov 14, 2012

Nov 7, 2012

Aug 22, 2012

May 21, 2012


What's New in this Group?
2014 Meeting Minutes
2013 Meeting Minutes
2012 Meeting Minutes


What's New in this Group?

3D EDA brings together proven 2D solutions
Thursday, April 17, 2014
Semiconductor Manufacturing & Design
With anticipated economic limits to the continuation of Moore's Law now on the horizon, it seems that moving into the 3rd dimension (3D) by stacking multiple layers of integrated circuits (IC) will be the ultimate expression of CMOS technology. Whether stacking heterogeneous chips using through-silicon vias (TSV), or monolithic approaches to forming multiple active IC layers on a single silicon substrate, 3D ICs should be both smaller and faster compared to functionally equivalent 2D chips and packages.

GLOBALFOUNDRIES and Samsung join forces on 14nm finFETs
Thursday, April 17, 2014
Semiconductor Manufacturing & Design
Fabless companies could skip the 20nm node and move straight to 14nm FinFETs. That is the hope of GLOBALFOUNDRIES and Samsung who are announcing a joint program that offers a single process design kit (PDK) and manufacturing at four different fabs with identical processes.The PDKs are available now, and 14nm manufacturing could move into high volume production by the end of the year. "This is unprecedented," said Kelvin Low, senior director of marketing at Samsung. "It never has happened in the industry, especially at the very leading edge nodes. We are confident that this will transform the supply chain model," he added. Fabless companies such as Qualcomm have been lobbying for such multi-sourcing for some time, and are eager to move to FinFETs which offer higher performance and reduced power consumption. The 14nm FinFET offer a 20% improvement in performance and a 35% reduction in power compared to 20nm technology.

Fast & Accurate Thermal Analysis of 3D-ICs
Monday, April 14, 2014
As Moore's law started saturating on a single semiconductor die, the semiconductor community came up with the approach of growing vertically by stacking dies one above other in a 3D-IC arrangement. However, a major concern with a 3D-IC is that the heat generated by each die can get trapped in the stack, and hence it's extremely important to accurately model the thermal map of Chip-Package-System (CPS) as a whole in order to manage the heat in a 3D-IC. Accurate thermal profiling is necessary for right placement of thermal sensors, Tmax control and thermal-aware EM sign-off. The thermal responses are coupled with power map (especially at 28nm and below) due to leakage current in device layers and self-heating of interconnect wires. Considering the practical situations, a dynamic thermal analysis along with accounting of time factor due to thermal capacitance of the package and system can provide a realistic approach to thermal analysis in 3D-ICs.

FinFET Custom Design
Wednesday, April 2, 2014
At CDNLive, Bob Mullen of TSMC gave a presentation on their new custom FinFET flow, doing design, and verifying designs. At 16nm there are all sorts of relatively new verification problems such as layout dependent effects (LDE) and voltage dependent design rules. We had some of this at 20nm but like most things in semiconductor, it gets harder with each process generation. I'm going to leave verification until another blog.

Advanced Packaging Alphabet Soup Creates Chaos for IMAPS 3D Panel
Wednesday, March 19, 2014
3D InCites
All hell broke loose at the 3D Panel discussion at the 2014 IMAPS International Device Packaging Conference. Nobody was hurt, and nothing got thrown, mind you, but it's clear that we've got some very different opinions regarding one of my pet peeves - the ever-expanding and increasingly complex advanced packaging nomenclature.

Silicon Photonics Bring New Capabilities To IC Design
Tuesday, March 18, 2014

These days, electronic systems and products are always looking for increased communication speed and lower power consumption. Emerging silicon photonics technology holds a great deal of promise in computing and communications for sheer performance, reduced power, and overall increases in bandwidth. Early applications to short-run data communications in the data center, described by Intel and Cisco among others, are capturing attention in the press. With the world headed toward the Internet of Everything, more capable and efficient server farms are interesting to many.

Plug-and-play test strategy for 3D ICs
Monday, March 17, 2014
Solid State Technology
Three-dimensional (3D) ICs, chips assembled from multiple vertically stacked die, are coming. They offer better performance, reduced power, and improved yield. Yield is typically determined using silicon area as a key factor; the larger the die, the more likely it contains a fabrication defect. One way to improve yield, then, is to segment the large and potentially low-yielding die into multiple smaller die that are individually tested before being placed together in a 3D IC.

Big sell: IP trends and strategies
Tuesday, March 11, 2014
Semiconductor Manufacturing & Design
Experts at the table: Continued strong growth for semiconductor intellectual property (IP) through 2017 has been forecast by Semico Research. Semiconductor Manufacturing & Design invited Steve Roddy, Product Line Group Director, IP Group at Cadence, Bob Smith, Senior Vice President of Marketing and Business Development at Uniquify and Grant Pierce, CEO at Sonics to discuss how the IP landscape is changing and provide some perspectives, as the industry moves to new device architectures.

Exploring circuit design in FinFET technology
Monday, March 10, 2014
EE Times Asia
The major foundries have announced FinFET technologies for their most advanced processes. Intel introduced this transistor at the 22 nm node, TSMC for their 16 nm process, and Samsung and Globalfoundries are introducing it for their 14 nm processes. As with any new process technology, the most important question to an IC designer is "What does this mean to me?"

Cost-efficient 3D IC wafer processing without adhesives
Monday, January 27, 2014
EE Times Asia
During a 3D TSV Summit on Minatech' campus in Grenoble, France, a resounding topic across the floor was on how to cut costs in 3D IC packaging. Disregarding IC design, there are many processes involved before dies can be stacked together. These include the manufacture of Through Silicon Vias (TSV), wafer handling and thinning, TSV reveal etching and Chemical Mechanical Planarization (CMP), then applying micro-bumps to finally stack another wafer or selected know-good dies.

UTBB FDSOI Devices Featuring 20nm Gate Length
Friday, January 10, 2014
Did you go to IEDM 2013 in Washington DC ? You may have attended to the "Advanced CMOS Technology Platform" chaired by TSMC, and listen to the FD-SOI related presentation "High Performance UTBB FDSOI Devices Featuring 20nm Gate Length for 14nm Node and Beyond". According with the abstract, this paper is the first time report of "high performance Ultra-thin Body and Box (UTBB) FDSOI devices with a gate length (LG) of 20nm and BOX thickness (TBOX) of 25nm, featuring dual channel FETs (Si channel NFET and compressively strained SiGe channel PFET)." If you didn't go to Washington DC, or not familiar with FD-SOI, having a look at FD-SOI device architecture could help:

Glass Interposers
Monday, January 6, 2014
Electronic Engineering Journal
There's been lots of discussion of the silicon interposer as a way to ease us into the world of 3D-packaged ICs. The silicon interposer is the main enabler for what's typically referred to as 2.5D packaging; it acts like a high-quality micro-PCB that can be built using the silicon manufacturing infrastructure that's already in place.

China's SMIC Responds to Soaring 3D IC Market
Monday, October 21, 2013
EE Times
In hopes of getting a piece of action in the rapidly growing thru-silicon-via technology-based 2.5D and 3D IC market, China's leading foundry, Semiconductor Manufacturing International Corp. (SMIC), announced Monday that it has formed an R&D and manufacturing center dedicated to vision, sensors, and 3D IC.

Xilinx, TSMC reach volume production on 28nm 3D ICs
Monday, October 21, 2013
Xilinx and TSMC have jointly announced production release of the Virtex-7 HT family, what the pair claims is the industry's first heterogeneous 3D ICs in production. With this milestone, all Xilinx 28nm 3D IC families are now in volume production. These 28nm devices were developed on TSMC's chip-on-wafer-on-substrate (CoWoS) 3D IC process that produces significant silicon scaling, power and performance benefits by integrating multiple components on a single device, the companies said.

Analog Drives Processor Architecture
Thursday, October 3, 2013

The recent port of a number of mixed signal interface IP blocks to 20nm by Synopsys Inc raises some fascinating questions on the microprocessor ecosystem. In days gone by, analog was well behind the curve. Now, USB, DDR, PCI Express, and MIPI PHY interfaces are available at what is pretty much the leading edge.

MemCon Panel: Promises and Pitfalls of 3D-IC Memory Standards
Wednesday, August 14, 2013
Cadence Blog
Much has been said about a "memory wall" that emerges when the throughput needs of the system outstrip the performance of the memory. One possible solution is to leap right over that wall with high-bandwidth 3D-IC solutions. But there's both promise and peril with emerging 3D-IC memory standards, according to panelists at the MemCon conference August 6, 2013.

Mentor and Tezzaron Optimize Calibre 3DSTACK for 2.5D/3D-ICs
Monday, May 20, 2013
3D InCites
WILSONVILLE, Ore., May 20, 2013--Mentor Graphics Corp. (NASDAQ: MENT) and Tezzaron Semiconductor Corp. today announced they are collaborating to integrate the Mentor® Calibre® 3DSTACK product into Tezzaron's 3D IC offerings. The new integration will focus on fast, automated verification of die-to-die interactions in 2.5D and 3D stacked die configurations by verifying individual dies in the usual manner, while verifying die-to-die interfaces in a separate procedure with specialized automation features. The two companies plan to extend their collaboration to include development of solutions for the silicon photonics market.

MOSIS joins push for silicon photonics tech
Monday, May 6, 2013
EE Times Asia
MOSIS, a provider of low-cost prototyping and small volume production services for custom ICs, has partnered with ePIXfab, the European Silicon Photonics support centre that offers low-cost prototyping services for photonic ICs. According to the company, the venture gives MOSIS' customers access to Imec's modern fully integrated silicon photonics processes and Tyndall's advanced silicon photonics packaging technology.

Adaptive IP is the wave of the future
Thursday, May 2, 2013
EE Times
In electronics, configurable and adaptive are terms often associated with field programmable gate arrays (FPGAs) and not blocks of intellectual property (IP). And just like configurable FPGAs were 20 years ago, adaptive IP is the wave of the future. More and more often, system-on-chip (SoC) designs make use of third-party IP. So much so, that surveys peg the percentage of IP content in a typical SoC at 70% or more, with many of these SoCs implemented in more advanced process nodes. At 28 nanometer (nm), process variation effects and dynamic variations due to fluctuating operating conditions may obstruct system performance or cause system instability.

Car, wireless apps push pressure sensors as top MEMS segment
Thursday, April 25, 2013
EE Times Asia
According to the recent prediction from IHS, microelectromechanical system (MEMS) pressure sensors will experience tremendous growth this year to become the leading type of MEMS device. The forecast is driven and hinges on the equally healthy market for automotive and handset markets, noted the market research company.



What's New in this Group?
 AMS Foundry Interoperability

Apr 16, 2014

To participate in biweekly teleconferences, contact

Foundry Interoperability can be thought of as the ability to port a design from one foundry PDK to another foundry PDK at the same process node.  While the Back-End-Of the-Line (BEOL) and physical design are not expected to seamlessly translate, efforts for the FEOL (such as schematic entry) can begin now.

Design teams stand to gain the most, with fewer resources required for migration, faster time to market, and the ability to more cost effectively second source their products.  Foundries also benefit with less customer support for migration, faster time to tapeout, and lower threshold to design wins.  IP providers can support multiple foundries with fewer resources.  EDA tool providers are largely not impacted, once standardized PDKs are supported.

Without progress in this area, designers have to contend with:

  • Device parameters being different at each foundry
    • For example, Finger and multiplication factors are described differently
  • Device names are custom
  • Pins are not aligned
  • Boundaries are changed

In order to resolve these, the design team must perform extensive manual edits and create/employ custom and complicated scripts to map schematics.  This lowers productivity and quality, as resources are consumed and manual edits are prone to errors.

Progress toward foundry interoperability can be enabled by updating and requiring that standards are used within PDKs for:

  • Symbols, Pins, Boundaries
  • Device names
  • Model card names
  • Device parameters

PDK standards and their inclusion in the foundry PDK provides a framework for beginning a more comprehensive foundry interoperability capability within the industry.

The Analog / Mixed Signal working group has released the following documents.

1)  Motivation for Using Standardized PDK

This paper addresses PDK standardization efforts, including  iPDK and OpenPDK.  We address the goals of each effort, as well as commonality and deltas between them.  The business case for and obstacles to using a standardized PDK are presented.   We postulate the impact on foundries, fabless designers, and EDA vendors.

2)  PDK (Process Development Kit) Quality Checklist & User’s Guide

The PDK Quality Checklist and User’s Guide is an enhanced update to the 2008 GSA PDK Checklist.  This document is completed by the PDK developer and delivered with each new release of an Analog / Mixed Signal / RF PDK. This checklist will allow  design teams and foundries to more easily communicate needs, capabilities, and expectations for process PDKs.


 What's New in this Group?
PDK Quality Checklist and User’s Guide

Checklist is completed by the PDK developer and delivered with each new release of an Analog / Mixed Signal / RF PDK. This checklist will allow  design teams and foundries to more easily communicate needs, capabilities, and expectations for process PDKs.  This document helps obtain a better understanding of the source data, completeness and quality of the PDK before using it to design ICs or to modify it to fit into your in-house design flow.  The Checklist Users Guide has been combined with the checklist, in Version 4.0 (July 2013)

AMS/RF Process Control Monitoring (PCM) Checklist

Provides a recommended list of parameters that foundries should measure (i.e., test); a uniform way to measure each parameter (i.e., describe the measurement); and a consistent way to describe the test data.

AMS/RF Process Checklist

Identifies the different elements of a foundry’s AMS/RF process and its ability to fulfill a semiconductor company’s needs; it serves as a basic set of guidelines for measuring available items in an AMS/RF foundry process; and it is an efficient way to communicate information in a consistent format across all foundries.

Mixed-Signal/RF SPICE Model Checklist

A document completed by the SPICE model developer and delivered with each new release of an SPICE model. This document helps developers better understand the source data, completeness and quality of the model before using it to design ICs or to re-extract it to fit into specific product needs. A Checklist Users Guide and Checklist Taxonomy & Definitions are also available for download.

Bookmark the permalink.
RevitasTSMCUMCeSiliconCalibreAmkor TechnologySamsung